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Abstract- Reversible logic will be a favourable logic by dissipating less heat than the thermo dynamic limit for 

the emerging computing technologies. Also it has become very promising for low power designs. Reversible 

designs of Combinational and Sequential circuits are built by replacing the latches, flip-flops and associated 

combinational gates of the traditional irreversible designs by their reversible counter parts. But this replacement 

technique is not very promising because it leads to high quantum cost and garbage outputs. So, in this paper we 

presented both the direct design and replacement designs of 5-bit up down counter and universal shift register 

which are practically important using reversible logic and PSDRM expressions. Replacement design is done by 

replacing the RTL design using reversible designs. Direct design is done by representing the state transitions and 

the output functions of the circuits using PSDRM expressions which are obtained from truth table or state 

transition table. Thus my direct design of a 5-bit updown counter and universal shift register save 42.66%, 

9.79% quantum cost and 93.75%, 40% garbage outputs respectively than the replacement design. 

 

I. INTRODUCTION 
Reversible logic has already found wide application in many emerging computing technologies. Therefore, 

developing efficient methods for reversible logic synthesis and also designing practically important reversible 

circuits have become very important. Most of the reversible logic synthesis attempts are concentrated on 

reversible combinational logic synthesis. As feedback is considered as a restriction in reversible logic, some 

researchers argue that reversible sequential logic is not possible. However, in 1980, Toffoli argued that if the 

feedback is provided through a delay element, then the feedback information will be available as the input to the 

reversible combinational circuit in the next clock cycle and sequential logic is possible. However, very recently, 

only limited attempts have been made in the field of reversible sequential logic synthesis. Reversible designs of 

building blocks of sequential circuits such as latches and flip-flops on the top of reversible gates and suggest 

that sequential circuits be constructed by replacing the latches, flip-flops, and other combinational gates of 

traditional irreversible designs by their reversible counter parts.  

The first attempt of direct design of synchronous sequential circuit using reversible gates , where there 

design level-triggered up counters using positive polarity Reed–Muller (PPRM) expression for representing the 

state transition of the counter. The designed up counter is more efficient than the replacement design in terms of 

both quantum cost and garbage outputs. In that they express next state of the counter as a function of clock and 

present state. Then, we express the next state using PPRM expression and realize the PPRM expression using 

reversible gates. Similar PPRM-based reversible circuit synthesis is done. Fixed-polarity Reed– Muller (FPRM) 

expression requires less or at most same number of product terms than PPRM expression for a given function. 

Thus, FPRM-based reversible circuit synthesis is more efficient than PPRM-based reversible circuit synthesis. 

FPRM-based reversible circuit synthesis is done. Pseudo Reed–Muller (PSDRM) expression is a more 

generalized class of Reed–Muller expression and requires less or at most equal number of product terms than 

FPRM. Thus, PSDRM-based reversible circuit synthesis is more efficient than PPRM- and FPRM based 

reversible circuit synthesis.  

  

II. REVERSIBLE LOGIC 
A reversible gate (or a circuit) maps every input combination to a unique output combination. This unique 

mapping implies that a reversible circuit has the same number of inputs and outputs. A reversible circuit with n 

inputs/outputs is called an n× n reversible circuit. A reversible circuit is constructed as a network of reversible 

gates. Fig. 1 shows the commonly used reversible gates such as 1 × 1 NOT gate, 2 × 2 Feynman gate, 3 × 3 

Toffoli gate, and 3 × 3 Fredkin gate. Toffoli gate may have more than three inputs/outputs and they are called 

multiple-controlled Toffoli gates.  
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Fig.1. Commonly used reversible gates. (a) NOT gate. (b) Feynman gate. (c) Toffoli gate. (d) Fredkin gate. 

 

The complexity of reversible circuit design is compared in terms of quantum cost (the number of primitive 

quantum gates required to realize the circuit) and the number of garbage outputs (the final outputs that are not 

used as the primary outputs). The 1 × 1 and 2 × 2 gates are technology realizable primitive gates and their 

quantum costs are assumed to be one. Thus, the quantum cost of NOT gate and Feynman gate is one each. 

Toffoli and Fredkin gates are macro level gates and need to be realized on the top of 2 × 2 gates. The 3 × 3 

Toffoli gate and the Fredkin gate can be realized using five 2 × 2 primitive gates and thus their quantum cost is 

five each. Realization of multiple-controlled Toffoli gates from primitive quantum gates are presented where 

quantum costs for up to 16 × 16 Toffoli gates are reported. The quantum costs for 4 × 4, 5 × 5, and 6 × 6 Toffoli 

gates are 14, 20, and 32, respectively. Classical AND, OR gates can be realized using Toffoli gates. Reversible 

realization of two- and three-input AND gates are shown in Fig. 2(a) and (b), respectively.  

                       
(a)                                                              (b) 

Fig.2. Reversible realizations of (a) 2-input AND gate. (b) 2-input OR gate. 

 

Reversible realization of two-input AND gate requires five quantum cost and two garbage outputs and that 

of three-input AND gate requires 14 quantum cost and three garbage outputs. Reversible realization of two-

input OR gate is shown in Fig. 2(c), which requires seven quantum cost and two garbage outputs. Reversible 

realizations of level-triggered and falling-edge triggered D flip-flops are shown in Fig. 3(a) and (b), 

respectively. 

 
Fig.3. Reversible realization of (a) +ve level triggered. (b) -ve edge triggered D flip-flops 

 

In Fig. 3(a), the state output is copied using a Feynman gate and fed back to the second input of the Fredkin 

gate. When the clock C is zero, then the feedback is connected to the state output maintaining the state output 

unchanged. When C becomes one, then the D input is connected to the state output performing the level-

triggered load operation. This realization requires six quantum costs and two garbage output. In Fig. 3(b), the 

feedback is connected to the third input of the Fredkin gate. When C is one, then the feedback is connected to 

the state output maintaining the state output unchanged. When C becomes zero, then the D input is connected to 

the state output performing the falling-edge triggered load operation. This realization requires six quantum costs 

and two garbage output. 

 

III. REVERSIBLE REALIZATION OF 4:1 MULTIPLEXER USING PSDRM 
An n-variable Boolean function f (x1, x2, . . . , xi, . . . , xn) can be expanded on the variable xi using any of the 

following expansions f (x1, x2, . . . , xi, . . . , xn) = f0  xi f2 (positive Davio, pD) 

f (x1, x2, . . . , xi, . . . , xn) = f1  xi f2 (negative Davio, nD) where f0 = f (x1,  . . , xi−1, 0, xi+1, . . . , xn) , f1 = f 

(x1, .  . , xi−1, 1, xi+1, . . . , xn) and f2 = f0 f1.If we apply pD expansion on all variables of an n-variable 
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Boolean function f (x1, x2, . . . , xn), then the resulting expression can be represented as f(x1,x2,...,xn) = f00..00  

f00..01 xn  f00..10 xn-1  f00..11 xn-1 xn ....   f11..11 x1x2...xn1xn where the coefficients are (∀ i ∈  {0, 1}n) fi ∈  {0, 

1}.If a subscript of a coefficient is one, only then the corresponding variable appears in the uncomplemented 

form in the associated product term. If a coefficient is one, only then the associated product term appears in the 

expression.  

Consider a 4:1 MUX as shown below with 4 inputs A, B, C, D, 2 selection lines inputs S1, S0 and 1 output Y as 

shown in the fig. 4. Now considering its truth table, PSDRM expression can be computed directly from the 

PSDRM tree, as shown in Fig. 5.  

 

 
 

               (a)                                                (b) 

 

Fig. 4. (a)  4:1 Multiplexer. (b) Truth table. 

 

  
Fig.5. PSDRM tree of a 4:1 multiplexer 

 

If we apply pD expansion on the variable S1, then f0 = 00000000111111110000111100001111, f1 = 

00110011001100110101010101010101, and f2 = 00110011110011000101101001011010. Now, f0 goes to the 

left child of the root and f2 goes to the right child of the root of the tree of Fig. 5. Similarly, the pD expansion is 

applied on the other internal nodes traversing the path from the root to a leaf with coefficient one. The leaves 

represent the final PPRM expression. The resulting expression is determined from the ones of the coefficient 

vector and their corresponding input combinations. 

If we apply nD expansion on the variable S1, then f0 = 00110011001100110101010101010101, f1 

=00000000111111110000111100001111, and f2 = 00110011110011000101101001011010. Now, f0 goes to the 

left child of the root and f2 goes to the right child of the root of the tree of Fig. 5. Similarly, the nD expansion is 

applied on the other internal nodes traversing the path from the root to a leaf with coefficient one. The leaves 

represent the final NPRM expression. The resulting expression is determined from the ones of the coefficient 

vector but writing the variable in complemented form according to the corresponding input combinations. 

But if we want PSDRM expression we have to choose randomly pD or nD expansion. For the PSDRM tree 

designed above, even though we considered getting minimum number of ones at the descendents, we get all pD 

expansions only hence here there is no need of complimented variables. Thus we get the 1’s for 

8,20,24,26,34,40,49,50,52,56 which can be written in the form of binary expansion as 001000, 010100, 011000, 

011010, 100010, 101000, 110001, 110010, 110100, 111000 .above binary codes can be converted into PSDRM 

expression as below. Thus the resulting PSDRM expression of the tree of Fig. 4 is  

 

Selection Output 

S1 S0 Y 

0 0 A 

0 1 B 

1 0 C 

1 1 D 
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f (S1,S0 ,A,B,C,D) = A⊕S0 B⊕S0  A⊕S0 A C⊕S1 C⊕S1 A⊕S0 S1 D⊕S1 S0 C⊕S0 S1 B⊕S1 S0 A 

 

The above PSDRM expression can be realized using reversible gates, as shown in Fig. 6, which is self-

explanatory. The circuit of Fig. 5 requires one Feynman gate, four 3 × 3 Toffoli and five 4 × 4 Toffoli gates. 

Therefore, its quantum cost is 1 × 1 +4 × 5 + 5 × 14 = 91. It has one primary output and six unused outputs. 

Therefore, it has six garbage outputs. 

 
Fig.6. Reversible realization of above PSDRM expression (4:1 MULTIPLEXER) 

 

IV. DESIGN OF REVERSIBLE 5-BIT UP DOWN COUNTER 
In this section, we will first consider the Direct Design obtained from the reference [22] and then make the 

reversible Replacement Design and then calculate the quantum cost and garbage output for a Reversible 5-Bit 

Updown Counter circuit.  

Firstly the Direct Design involves design of next state logic expressions. For designing the next state logic 

of a 5-bit up down counter, consider the classical design of a 5-bit updown counter as shown in the fig. 7. Now 

we can construct transition table considering the clock (designated C), present states (designated Q0 , Q1 , Q3 , Q3 

, Q4),mode selection input (designated  as M) as inputs  and the next states (designated Q0+ , Q1+  , Q2 +, Q3 + 

,Q4+) as the outputs. So, When M=0 it acts as an up counter and when M=1 it acts as a down counter as shown 

in the state transition table below. 

 
Fig.7. Classical design of a 5-bit up down counter 

 

Table. 1. State Transition table of 5 Bit Up Down Counter 

Present 

 state 

 

Mode 

(M) 

Next state 

C=0 C=1 

Q4 Q3 Q2 Q1 Q0 Q4+ Q3+Q2+ Q1+ 

Q0+ 

Q4+ Q3+ Q2+ 

Q1+Q0+ 

00000 0 00000 00001 

00001 0 00001 00010 

00010 0 00010 00011 

..... .... ..... ..... 

..... ... ..... ..... 

11101 0 11101 11110 

11110 0 11110 11111 

11111 0 11111 00000 

11111 1 11111 11110 

11110 1 11110 11101 

11101 1 11101 11110 

..... ..... ..... ..... 

..... ..... ..... ..... 

00001 1 00001 00000 

00000 1 00000 11111 
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PSDRM expressions for the next states Q0+ , Q1+  , Q2 +, Q3 + ,Q4+ of a 5 bit updown counter of the Table I is 

obtained from the expressions (20)-(23) from the Reference [22] as below.    

    

   Q3+ = Q3 ⊕ C (M ⊕Q2) (M⊕Q1) (M⊕Q0) 

Q2+ = Q2 ⊕ C (M⊕Q1) (M⊕Q0) 

Q1+ = Q1 ⊕ C (M⊕Q0) 

Q0+ = Q0 ⊕ C 

 

These expressions can be realized as shown in the Fig. 8.This realization needs one 6 × 6 Toffoli gate, one  

5 × 5 Toffoli gate, one 4 × 4 Toffoli gates, one 3 × 3 Toffoli gates and fifteen Feynman gates. Therefore, its 

quantum cost is 1 × 32 + 1 × 20 + 1 × 14 + 1 × 5 + 15 × 1 = 86. The circuit has two garbage outputs (M, C) as 

shown below. 

 
Fig.8. Reversible realization of Direct Design of a 5 bit up down counter 

 

Secondly the Replacement Design involves the process of converting the Fig. 7. into reversible design 

which requires the reversible designs of JK Flip Flop, And gate, Or gate, and Inverter so that it can be replaced 

as shown in Fig. 10. As discussed in the chapter II we have all the And gate, Or gate, and Inverter  designs .Also 

JK Flip Flop can be designed using D Flip Flop using the equation D = J Qbar + K’ Q as shown in the Fig. 9.  

 
 

Fig. 9. Classical design of JK Flip Flop design using D Flip Flop 

 

Thus the final reversible replacement design of Fig.7. is as shown in the Fig.10. 
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Fig.10. Reversible realization of Replacement Design of a 5 bit up down counter 

 

This reversible Replacement Design realization needs seventeen NOT gates, five D Flip Flops, seventeen   

3 × 3 Toffoli gates and twenty Feynman gates. Therefore, its quantum cost is 17 × 1 + 5 × 6 + 17 × 5 + 20 × 1 = 

150. The circuit has thirty two garbage outputs. 

 

V. DESIGN OF REVERSIBLE UNIVERSAL SHIFT REGISTER 
In this section, we will Design the practically important Universal Shift Register using the Direct Design 

and then make the reversible Replacement Design. Finally we will calculate the quantum cost and garbage 

output and comparing them. 

Firstly the Direct Design involves design of next state logic expressions. For designing the next state logic 

of a Universal Shift Register, consider the classical design of a Universal Shift Register as shown in the fig.11. 

Now we can construct transition table considering the clock (designated C),four  present states (designated Q0 , 

Q1 , Q2 , Q3), two mode selection inputs (designated  as S1 , S0) ,shift right and shift left inputs(designated as Sr, 

Sl ), four parallel load inputs (designated as A,B,C,D) and the next states (designated Q0+ , Q1+  , Q2 +, Q3 +) . Its 

classical design and state transition table is as shown in the fig.11. 
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(a)                                                                                                               (b) 

Fig.11. (a) Classical Design (b) State Transition Table of a Universal Shift Register 

 

PSDRM expressions for the next states Q0+ , Q1+  , Q2 +, Q3 + of a Universal Shift Register of the Table I is 

obtained from the PSDRM tree as below.    

Q3+ = Q3 ⊕ C Q3 ⊕ C S’1 S’0 Q3 ⊕ C S’1 S0  Sr ⊕  C S1 S’0 Q2 ⊕ C S1 S0 A 

Q2+ = Q2 ⊕ C Q2 ⊕ C S’1 S’0 Q2 ⊕ C S’1 S0  Q3 ⊕ C S1 S’0 Q1 ⊕ C S1 S0 B 

Q1+ = Q1 ⊕ C Q1 ⊕ C S’1 S’0 Q1 ⊕ C S’1 S0  Q2⊕  C S1 S’0 Q0 ⊕ C S1 S0 C 

Q0+ = Q0 ⊕ C Q0 ⊕ C S’1 S’0 Q0 ⊕ C S’1 S0  Q1⊕  C S1 S’0   Sl⊕ C S1 S0  D 

These expressions can be realized as shown in the Fig.12. This realization needs sixteen 5 × 5 Toffoli gate, 

four 3 × 3 Toffoli gates and ten Feynman gates. Therefore, its quantum cost is 16 × 20 + 4 × 5 + 10 × 1 = 350. 

The circuit has fifteen garbage outputs as shown below.  

 
Fig.12. Reversible realization of Direct Design of a Universal Shift Register 

Selection USR 

operation 

S1 S0 

0 0 No Change 

0 1 Shift Right 

1 0 Shift Left 

1 1 Parallel Load 
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Secondly the Replacement Design involves the process of converting the Fig.11. into reversible design 

which requires the reversible designs of 4:1 Mux’s, and D Flip Flop’s so that it can be replaced as shown in Fig. 

13. As discussed earlier, in the chapter II we have the D Flip Flop and in chapter III we presented the reversible 

multiplexer design. Thus the final replacement design of Fig.11. is as shown in the Fig.13. 

 

 
Fig.13. Reversible realization of Replacement Design of a Universal Shift Register 

 

This reversible Replacement Design realization needs four D Flip Flops, sixteen 3 × 3 Toffoli gates, twenty 

4 × 4 Toffoli gates and four Feynman gates. Therefore, its quantum cost is 4 × 6 + 16 × 5 + 20 × 14 + 4 × 1       

= 388. The circuit has twenty five garbage outputs. 

 

VI. COMPARISIONS 
Comparison of the direct design with the replacement design of a 5-bit updown counter is given in the 

Table II. From table II we see that our direct design requires 42.66% less quantum cost and 93.75% less garbage 

outputs than the replacement design obtained from the [22]. 

 

Table II. Comparison of the direct design with the replacement design of a 5-bit updown counter. 

Complexity comparison Direct Design Replacement Design % improvement 

Quantum Cost 86 150 42.66 

Garbage output 2 32 93.75 

 

Similarly, Comparison of the direct design with the replacement design of a Universal Shift Register is 

given in the Table III. From table II we see that our direct design requires 9.79% less quantum cost and 40% less 

garbage outputs than the replacement design. 

 

Table III. Comparison of the direct design with the replacement design of a Universal Shift Register. 

Complexity comparison Direct Design Replacement Design % improvement 

Quantum Cost 350 388 9.79 

Garbage output 15 25 40 
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VII. CONCLUSION 
Reversible logic has shown a good promise for low-power design using emerging computing technologies. 

A good number of design methods for reversible combinational circuits have been proposed [1]–[2]. However, 

only a very limited works have been reported on reversible sequential circuit design [14]–[20]. In this paper, we 

present a novel approach of direct design of 4:1 Multiplexer and important 5 bit updown counter along with a 

Universal shift register. Design examples show that our direct designs save quantum cost and garbage outputs 

than the replacement design approach suggested earlier as given in tabular forms in chapter VII. Thus, our 

proposed direct design method outperforms the previously reported replacement design approach. 
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